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Longwy, 54400 Cosnes et Romain, France

2 Commande Numérique des PRrocédés Industriels (CONPRI), National School of Engeneering in Gabes, Street
Omar Ibn Elkhattab 6029 ZRIG Gabes, Tunisia

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 21 November, 2017
Accepted: 24 January, 2018
Online: 10 February, 2018

Keywords:
Time delays
Nonlinear system
Adaptive observer
LMI
Lipschitz function
Bilinear system

This paper deals with the design of adaptive observer for a class of non-
linear systems with time delays. Within this work, we develop an adap-
tive observer for a bilinear time delay system, then we extend those re-
sults in the presence of Lipschitz nonlinear functions in the system’s
dynamics. In the stability analysis of the estimation errors, we combine
a Linear Parameter Varying (LPV) approach in the presence of time de-
lays with a polytopic approach. The obtained stability conditions are
given in terms of the solvability of Linear Matrix Inequalities (LMIs) on
the vertices of a convex polytope. Numerical examples are finally given
to show the effectiveness and feasibility of our results.

1 Introduction

This paper is an extension of work originally pre-
sented at the 6th International Conference on Systems
and Control and entitled ”Full order adaptive observer
design for time delay bilinear system” [1]

During the last decades, several theoretical results
with interesting applications were focused on the de-
sign of observers for nonlinear systems [2], [3], [4], [5],
[6], [7] [8], [9] (and references there in). Due to the dif-
ficulty of setting the nonlinear behaviour in a system’s
dynamics and the non availability of all the state vec-
tor component, the design of observer is a challenging
and open problem.

Indeed, since the presence of time delay is often
encountered in the industrial processes, it is necessary
to integrate it in the system model for a best mod-
elization of these systems. The presence of time de-
lay should not be neglected, because it can affect the
systems performances and may lead, in certain cases,
to its instability [10]. For these reasons, this class of
systems has been intensively studied in the literature
[11], [12], [13], [14] and will be considered also in the
present work.

Apart the presence of time delays in a nonlinear
model, another difficulty may appear: the presence
of some unknown parameters, which should be taken
into account in order to make the model more accu-
rate. Hence, we propose in this work to design an
adaptive observer, which does not only estimate the
state vector of a nonlinear time delay system, but also
the unknown parameters which affect its dynamics.
Thanks to its ability to handle some challenging ap-
plications such as in robust and fault tolerant con-
trol, the adaptive observer allows to cope with the
lack of knowledge on the system’s unknown param-
eters. Classically, an adaptive observer may provide
a suitable estimation of the states and the unknown
parameters under some appropriate excitation condi-
tions [3]. There are two major approaches to design
adaptive observer. The first approach is based on the
elaboration of an adaptation law derived from the sta-
bility analysis of a state observer. The convergence of
the unknown parameters can be ensured under some
persistent excitation [15], [16], [17]. The second ap-
proach consists in designing a state observer for an
augmented system, where the state dynamics model
is augmented with the dynamics of its unknown pa-
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rameters. [18], [19], [20], [21].
In this paper, we consider an adaptive observer

design for a class of nonlinear time delay systems
where the dynamics are nonlinear in the states and in
the unknown parameters and contains some bilinear
terms. The nonlinearities considered satisfied a Lips-
chitz condition. Here, the convergence of the adaptive
observers is treated in a more tractable way and does
not require to satisfy the persistent excitation condi-
tion as in [22], [23], [24] and contrary to many previ-
ous contributions. In a first time, an adaptive observer
will be proposed in the absence of some nonlineari-
ties. The considered system represents a time delay
bilinear system affected by unknown parameters. The
bilinear systems do appropriately model some phys-
ical processes than linear or nonlinear ones. Never-
theless, the fact of considering a bilinear model does
not suffice, due to the presence of nonlinear behaviour
which ought to be integrated. For that reason, we con-
sider in a second time the presence of some additional
Lipchitz nonlinear functions. It is necessary to study
those results separately because the design of adap-
tive observer in the first case does not derive from the
second one due to the presence of some unmeasured
state variables in the nonlinear functions, which make
the problem more conservative.

This paper is structured so that the statement of
the problem and some useful formulas are presented
in the section 2. Section 3 is devoted to the design
of adaptive observer for a bilinear time delay system.
This result is extended in section 4, by the addition of
nonlinear Lipschitz functions in the delayed bilinear
system dynamics. In section 5, a discussion of the ob-
tained results is made by comparison with some pre-
vious ones. Finally, in section 6, the obtained results
will be applied to numerical examples to show their
effectiveness.

Notations.Throughout this paper, Rn denotes an
n-dimentional Euclidean space, and || · || the associated
Euclidean norm [25], where

||x|| =
√
xT x, ∀x ∈Rn (1)

and using expression (1), the following induced ma-
trix norm given by

||A|| = max
||x||,0

||Ax||
||x||

(2)

is used in this paper where A ∈Rn×m.
(∗) will denotes the transpose of the off-diagonal parts
of a matrix.

2 Problem statement

In this work, a class of nonlinear time delay systems
is investigated where the state space model is given by
the following equation

ẋ(t) = A0x(t) +
m∑
i=1

Aiuix(t) + `(x,u) +Ad0
x(t − τ0)

+
m∑
i=1

Adiui(t)x(t − τi) +Bu(t) +Gg(x,u)θ (3a)

θ̇ = 0 (3b)

y = Cx(t) (3c)

where x ∈Rn, u ∈Rm, θ ∈Rq, y ∈Rp are the states vec-
tor, the input control, the unknown parameters vector
and the output vector, respectively. τi for i = 0, . . . ,m
are known constants delays. The matrices: Ai ∈ Rn×n,
Adi ∈ R

n×n, for i = 0, . . . ,m, B ∈ R
n×m, G ∈ R

n×r and
C ∈Rp×n are known with constant values.
The following assumptions are given and will be used
in the sequel

Assumption 1. The input u(t) is bounded such that
u(t) ∈ U ⊂R

m, where

U = {u : t→R
m/∀t ∈R+,ui,min ≤ ui(t) ≤ ui,max,

µi,min ≤ u̇i(t) ≤ µi,max} (4)

Assumption 2. The function `(x,u) : Rn ×Rm → R
n is

Lipschitz in x, ∀u ∈ U , i.e there exists a positive scalar b1
such that

||`(x,u)− `(x∗,u)|| ≤ b1||x − x∗|| (5)

The function g(x,u) : Rn ×Rm → R
r×q is bounded ∀x ∈

R
n and ∀u ∈ U , that is there exists a scalar bg such that

||g(x,u)|| ≤ bg

and is Lipschitz in x, ∀u ∈ U , i.e there exists a positive
scalar b2 where

||g(x,u)− g(x∗,u)|| ≤ b2||x − x∗|| (6)

Assumption 3. The unknown parameters are supposed
to be bounded such that there exists a scalar b3 > 0 veri-
fying

||θ|| ≤ b3

Since assumption 1 holds, we have put the inputs
ui(t), for i = 1, . . . ,m, and their derivatives in the same
vector

δ =



δ1
...
δm
δm+1
...
δT2m


=



u1
...
um
u̇1
...
u̇m


(7)

one can see that the vector δ belongs to a convex poly-
tope, described by

P = [u1,min,u1,max]× . . .× [um,min,um,max]

×[µ1,min,µ1,max]× . . .× [µ1,min,µ1,max] (8)

Let us note Φ the set of vertices of the convex polytope
P , where its cardinality is equal to 22m, and described
by

Φ = {σ = [φ1, . . . ,φ2m]T ∈R2m/∀i ∈ [0,m],

φi ∈ {ui,min,ui,max} and ∀i ∈ [m+ 1,2m],

φi ∈ {µi,min,µi,max}} (9)
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In what follows, we point out the problem of the de-
sign of adaptive observer, which allows a simultane-
ous estimation of the states and the unknown param-
eters. As these observers are usually designed to be
applied in robust and fault tolerant control, the add
of the term Gg(x,u)θ in the system dynamics allows
to model uncertainties affecting the system in the case
of robust control, or may be used to model faults in
the case of fault detection and isolation [18], [26], this
term is more general than only the term Gθ as consid-
ered in [1] and in the section 3 of the present work.

In a first time, we propose an adaptive observer
for system (3) without considering the presence of
the nonlinear Lipschitz functions, i.e `(x,u) = 0 and
g(x,u) = 1. In a second time, a more general adaptive
observer is proposed for the considered class of non-
linear time delay systems (3). The obtained results do
not lead to the results of the section before (see the
discussion in section 5), which justify the structure of
this work.

Before starting the observer design, let us give
some useful relations used in this paper. For x ∈ Rn
and y ∈ R

n, the following well known inequalities
hold

2||x|| ||y|| ≤ βxxT +
1
β
yyT , ∀β > 0 (10)

xzT + zxT ≤ cxxT +
1
c
zzT , ∀c > 0 (11)

3 Observer Design without Lips-
chitz nonlinearities

In this section, we consider system (3) without Lips-
chitz nonlinear functions, i.e. `(x,u) = 0 and g(x,u) =
1. Thus, an adaptive observer is proposed under the
following form

˙̂x(t) = A0x̂(t) +
m∑
i=1

Aiui x̂(t) +Bu(t) +Ad0
x̂(t − τ0)

+
m∑
i=1

Adiui(t)x̂(t − τi) +Gθ̂(t) +Lx(y(t)−Cx̂(t))

(12a)
˙̂θ(t) = Lθ(y(t)−Cx̂(t)) (12b)

where x̂(t) ∈ R
n and θ̂ ∈ R

q are the estimated states
vector and the estimated unknown parameters vec-
tor, respectively. Lx ∈ Rn×p and Lθ ∈ Rq×p are the ob-
server’s gains to be determined.

As a full order observer, we propose this structure
of the observer, since it is the most commonly used
in the literature, and had shown performance results.
Within this observer, only two observer gains have
to be determined, contrary to the full order observer
structure as proposed in [23], which may be cumber-
some to compute, due to the number of matrices to be
computed.

The estimation error has the following dynamics

ė(t) =H(u)e(t) +
m∑
i=0

Hdi e(t − τi) (13)

where

e(t) =
[
ex(t)
eθ(t)

]
=

[
x(t)− x̂(t)
θ(t)− θ̂(t)

]

H(u) =
[∑m

i=1Aiui −LxC G
−LθC 0

]
(14)

Hdi (u) =
[
Adiui 0

0 0

]
(15)

Notice that we considered u0(t) = 1 for reasons of sim-
plification. Then, system (12) is an adaptive observer
for the delayed considered system described by (3)
with `(x,u) = 0 and g(x,u) = 1, if and only if the es-
timation error system described by (13) is asymptoti-
cally stable. The stability of the estimation error e(t)
and the computation of the observer’s gains Lx and Lθ
are ensured via the following theorem.

Theorem 1. Assume that assumption 1 holds. System
(12) represents an adaptive observer to system (3) (with
`(x,u) = 0 and g(x,u) = 1), and the estimation errors sys-
tem (13) is quadratically stable for σ j ∈ Φ , j = 1, . . . ,22m,
if there exist matrices

• P (σ j ) ∈R(n+q)×(n+q) where

P (σ j ) = P T (σ j ) =
m∑
i=0

σ
j
i

[
Pi1 Pi2
P Ti2 Pi3

]
> 0 (16)

Pi1 ∈ R
n×n, Pi2 ∈ R

n×q and Pi2 ∈ R
q×q, for i =

0, . . . ,m,

• M ∈R(n+p)×(n+p), given by

M =
[
M11 S2M22
S1M11 M22

]
(17)

where M11 ∈ Rn×n and M22 ∈ Rq×q are nonsingu-
lar matrices. S1 ∈ R

q×n and S2 ∈ R
n×q are some

tuning matrices.

• Y1 ∈Rn×p and Y2 ∈Rq×p

and a positive scalar γ , such that the following LMIs
holds

α
j
(1,1) α

j
(1,2) α

j
(1,3) α

j
(1,4) α

j
(1,5)

∗ α
j
(2,2) α

j
(2,3) α

j
(2,4) α

j
(2,5)

∗ ∗ α(3,3) α(3,4) α
j
(1,5)

∗ ∗ ∗ α(4,4) α
j
(2,5)

∗ ∗ ∗ ∗ −1
γ Ik


< 0 (18)

where

α
j
(1,1) =

m∑
i=1

σ
j
m+iPi1 +

m∑
i=0

M11Aiσ
j
i +

m∑
i=0

ATi M
T
11σ

j
i

−Y1C −CT Y T1 − S2Y2C −CT Y T2 S
T
2

+
m∑
i=0

M11Adiσ
j
i +

m∑
i=0

ATdiM
T
11σ

j
i (19a)
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α
j
(1,2) =

m∑
i=1

σ
j
m+iPi2 +M11G+

m∑
i=0

ATi σ
j
iM

T
11S

T
1

+
m∑
i=0

ATdiM
T
11S

T
1 σ

j
i −C

T Y T2 −C
T Y T1 S

T
1 (19b)

α
j
(2,2) =

m∑
i=1

σ
j
m+iPi3 + S1M11G+GTMT

11S
T
1 (19c)

α
j
(1,3) =

m∑
i=0

σ
j
i Pi1 +

m∑
i=0

ATi M
T
11σ

j
i +

m∑
i=0

ATdiM
T
11σ

j
i

−M11 −CT Y T1 −C
T Y T2 S

T
2 (19d)

α
j
(1,4) =

m∑
i=0

σ
j
i Pi2 −M12 +

m∑
i=0

ATi M
T
11S

T
1 σ

j
i

−CT Y T1 S
T
1 −C

T Y T2 +
m∑
i=1

ATdiM
T
11S

T
1 σ

j
i (19e)

α
j
(2,3) =

m∑
i=0

σ
j
i P

T
i2 − S1M11 +GTMT

11 (19f)

α
j
(2,4) =

m∑
i=0

σ
j
i Pi3 −M22 +GTMT

11S
T
1 (19g)

α(3,3) = −M11 −MT
11 (19h)

α(4,4) = −M22 −MT
22 (19i)

α(3,4) = −S2M22 −MT
11S

T
1 (19j)

α
j
(1,5) = [M11Ad0

σ
j
0,0,M11Ad1

σ
j
1,0, . . . ,M11Admσ

j
m,0]

(19k)

α
j
(2,5) = [S1M11Ad0

σ
j
0,0,S1M11Ad1

σ
j
1,0, . . . ,

S1M11Admσ
j
m,0] (19l)

The observer gains are expressed by
Lx =M−1

11Y1 (20a)

Lθ =M−1
22Y2 (20b)

Proof. The proof of the theorem 1 will be developed
into two steps:

• In a first step, we give the stability conditions
using a Lyapunov Krasovskii approach for LPV
time delay systems, which leads to the resolu-
tion of an inequality.

• In a second step, we compute the observers ma-
trices and we transform the obtained inequality
into LMIs, using a Polytopic approach.

First Step. Let us consider a Lyapunov Krasovskii
function candidate with this form

V (e) =
[
e
ė

]T
F(u)E

[
e
ė

]
+

1
γ

m∑
i=0

∫ 0

−τi

∫ t+β

t
ėT (s)ė(s)dsdβ (21)

where F(u) =
[
P (u) M

0 M

]
, with P (u) ∈ R

(n+p)×(n+p),

P (u) = P (u)T > 0 and M is a matrix with a structure

described by (17). E =
[
I(n+q) 0

0 0

]
and γ is a positive

scalar.
Let us note ε(t) = ė(t), and we rewrite system (13)

under a descriptor form as follows[
I(n+q) 0

0 0

][
ė(t)
ε̇(t)

]
=

[
0 I

H(u) +
∑m
i=0Hdi −I

][
e(t)
ε(t)

]
+

m∑
i=0

[
0
Hdi

]∫ t−τi

t
ε(κ)dκ

Then, using the latter equation, we differentiate the
Lyapunov function in t, which leads to

V̇ (t) =
[
e(t)
ε(t)

]T
H

[
e(t)
ε(t)

]
+

m∑
i=0

βi(t)

− 1
γ

m∑
i=0

∫ t−τi

t
ėT (s)ė(s)ds (22)

where

H =
[
h(1,1) h(1,2)
∗ h(2,2)

]
(23)

with

h(1,1) = Ṗ (u) +MH(u) +HT (u)MT +
m∑
i=0

MHdi

+
m∑
i=0

HT
di
MT

h(1,2) = P (u)−M +HT (u)MT +HT
di
MT

h(2,2) = −M −MT

and

βi(t) =
[
eT (t) ėT (t)

]
F(u)

[
0
Hdi

]∫ t−τi

t
ė(s)ds

+
∫ t−τi

t
ėT (s)ds

[
0 HT

di

]
FT (u)

[
e(t)
ė(t)

]
(24)

Using inequality (11), we majorate βi as follows

βi(t) ≤ γ
[
eT (t) ėT (t)

]
F(u)

[
0

Hdi (u)

][
0

Hdi (u)

]T
FT (u)

×
[
e(t)
ė(t)

]
+

1
γ

∫ t−τi

t
ėT (s)ė(s)ds (25)

Replacing inequality (25) in the expression of the
derivative of the Lyapunov function V (e) described by
(22), implies

V̇ (e) ≤
[
e(t)
ė(t)

]T [
h(1,1) h(1,2)

∗ h(2,2)

][
e(t)
ė(t)

]
where

h(1,1) = Ṗ (u) +MH(u) +HT (u)MT +
m∑
i=0

MHdi

+
m∑
i=0

HT
di
MT +γ

m∑
i=0

MHdiH
T
di
MT
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h(1,2) = P (u)−M +HT (u)MT +HT
di
MT

+γ
m∑
i=0

MHdiH
T
di
MT

h(2,2) = −M −MT +γ
m∑
i=0

MHdiH
T
di
MT

The negativity of the derivative of the Lyapunov-
Krasovskii function is equivalent to the following in-
equality: [

h(1,1) h(1,2)

∗ h(2,2)

]
< 0

Applying the Schur complement on the latter inequal-
ity allows to get the following inequality,

a(1,1) a(1,2) a(1,4)
∗ a(1,3) a(1,4)
∗ ∗ −1

γ Ik

 < 0 (26)

where

a(1,1) = Ṗ (u) +MH(u) +HT (u)MT +
m∑
i=0

MHdi (u)

+
m∑
i=0

HT
di

(u)MT

a(1,2) = P (u)−M +HT (u)MT +
m∑
i=0

HT
di
MT

a(1,3) = −M −MT

a(1,4) = [MHd0
(u), . . . ,MHdm(u)]

with k = (m+ 1)(n+ q).

Second step. Now, using the polytopic approach, we
consider that assumption 1 holds and that the inputs
and their derivatives belong to the convex polytope P
defined by (8). Then, using the vector δ given by (7),
we rewrite the system’s matrices, the Lyapunov matrix
and its derivative as follows

P (u) = P (δ) = P0 +
m∑
i=1

δiPi , (27a)

Ṗ (u) = P (δ) =
m∑
i=1

δm+iPi (27b)

H(δ) =
[∑m

i=0Aiδi −LxC G
−LθC 0

]
(27c)

Hdi (δ) =
[
Adiδi 0

0 0

]
(27d)

Then, we compute inequality (26) in the whole set of
the vertices of the polytope Φ . By taking the matrices
P j (σi) and M with the form (16) and (17) respectively,
we obtain the results given in the proof, where the ob-
server’s gains are given by (20). �

Now, as discussed in the introductory section, we
consider in the next section a more general class of
systems with Lipschitz nonlinearities.

4 Observer Design with Lipschitz
nonlinearities

In this section, the objective is to design an adap-
tive observer for system (3) with the following gen-
eral structure in order to estimate simultaneously the
states vector x and the unknown parameters θ. For
that reason, the following adaptive observer is con-
sidered

˙̂x(t) =

A0 +
m∑
i=1

Aiui

 x̂(t) +Bu(t) + `(x̂,u) +Ad0
x̂(t − τ0)

+
m∑
i=1

Adiui(t)x̂(t − τi) +Gg(x̂,u)θ̂(t) +Lx(y −Cx̂)

˙̂θ = Lθ(y −Cx̂) (28)

where x̂ ∈ R
n and θ̂ ∈ R

q are the estimates of the
states x and the unknown parameters θ respectively.
Lx ∈Rn×p and Lθ ∈Rq×p are the observer’s gains.

The convergence analysis made in this section is
different from the section above, due to the presence
of the Lipschitz nonlinear functions `(x,u) and g(x,u).

In order to ensure the convergence of the proposed
adaptive observer, we had to choose the gains Lx and
Lθ which guarantee that the errors ex(t) = x(t) − x̂(t)
and eθ = θ − θ̂, converge to zero, in other words, the
estimated vectors x̂ and θ̂ converge to their actual val-
ues. Thus, this section is devoted to obtain the stabil-
ity conditions in term of LMI.

Let us give the dynamics of the estimation errors
ex(t) and eθ(t) as follows

ėx(t) =

A0 +
m∑
i=1

Aiui −LxC

ex(t) + (`(x,u)− `(x̂,u))

+Ad0
ex(t − τ0) +

m∑
i=1

Adiuiex(t − τi)

+G
(
g(x,u)θ − g(x̂,u)θ̂

)
(29a)

ėθ(t) = −LθCex(t) (29b)

After adding and subtracting the term ρGeθ(t) to
equation (29a), where ρ is a positive scalar, we obtain
the following augmented error system

ė(t) =H(u)e(t) +
m∑
i=0

Hdi (u)e(t − τi) +H` +GHg (30)

where Hdi is defined by (15) and

H(u) =
[∑m

i=1Aiui −LxC ρG
−LθC 0

]
H` =

[
`(x,u)− `(x̂,u)

0

]
Hg =Hg −

[
ρeθ(t)

0

]
Hg =

[
g(x,u)θ − g(x̂,u)θ̂

0

]
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G =
[
G 0
0 0

]
with u0(t) = 1.

The quadratic stability of the estimation error sys-
tem is ensured via the following theorem

Theorem 2. Assuming that assumptions 1, 2 and 3 hold.
System (28) is an adaptive observer for system (3), and
the estimation error is quadratically stable for σ j ∈ Φ , if
there exist matrices

• P (σ j ) ∈R(n+q)×(n+q) where

P (σ j ) =
m∑
i=0

σ
j
i

[
Pi1 Pi2
P Ti2 Pi3

]
> 0 (31)

Pi1 ∈ R
n×n, Pi2 ∈ R

n×q and Pi2 ∈ R
q×q, for i =

0, . . . ,m,

• M ∈R(n+p)×(n+p), such that

M =
[
M11 S2M22
S1M11 M22

]
(32)

where M11 ∈Rn×n and M22 ∈Rq×q. S1 ∈Rq×n and
S2 ∈Rn×q are some tuning matrices.

• Y1 ∈Rn×p and Y2 ∈Rq×p

and scalars ρ > 0, c1 > 0, c2 > 0 and γ > 0, such that the
LMIs (33) hold (see next page), for j = 1, . . . ,22m, where
the blocks αj(1,3), α

j
(1,4), α

j
(1,5), α

j
(2,5), α(3,3), α(3,4) and

α(4,4) are given by (19d), (19e), (19k), (19l), (19h), (19j)

and (19i), respectively. The blocks ωj(1,1), ω
j
(1,2), ω

j
(2,2),

ω
j
(2,3), ω

j
(2,4), ω

j
(1,5), ω

j
(1,6), ω

j
(2,5) and ωj(2,6) are as follows

ω
j
(1,1) =

m∑
i=1

σm+iPi1 +
m∑
i=0

M11Aiσi +
m∑
i=0

ATi M
T
11σi

−Y1C −CT Y T1 − S2Y2C −CT Y T2 S
T
2

+
m∑
i=0

M11Adiσi +
m∑
i=0

ATdiM
T
11σi

+
b2

1
c1
In + 2

b2
2b

2
3 + b2b3bg
c2

In

ω
j
(1,2) =

m∑
i=1

σ
j
m+iPi2 + ρM11G+

m∑
i=0

ATi σ
j
iM

T
11S

T
1

+
m∑
i=0

ATdiM
T
11S

T
1 σ

j
i −C

T Y T2 −C
T Y T1 S

T
1

ω
j
(2,2) =

m∑
i=1

σm+iPi3 + ρS1M11G+GTMT
11S

T
1

+ 2
b2
g + b2b3bg + ρ2

c2
Iq

ω
j
(2,3) =

m∑
i=0

σ
j
i P

T
i2 − S1M11 + ρGTMT

11

ω
j
(2,4) =

m∑
i=0

σ
j
i Pi3 −M22 + ρGTMT

11S
T
1

ωj(1,5) ω
j
(1,6)

ω
j
(2,5) ω

j
(2,6)

 = P (σ j )

The observer gains are expressed by

Lx =M−1
11Y1 (34a)

Lθ =M−1
22Y2 (34b)

Proof. We rewrite the error system described by (30)
in a descriptor form as follows[

I 0
0 0

][
ė(t)
ε̇(t)

]
=

[
0 I

H(u) +
∑m
i=0Hdi −I

][
e(t)
ε(t)

]
+

m∑
i=0

[
0
Hdi

]∫ t−τi

t
ε(k)dk +

[
0
H`

]
+
[

0
GHg

]
(35)

in order to put it in the Lyapunov function candidate
V (e), which will be chosen as in the first part, under
the form (21). A computation of the derivative of the
Lyapunov function V (e) yields to

V̇ (e) =
[
e(t)
ε(t)

]T [
W (1,1) W(1,2)
∗ −M −MT

][
e(t)
ε(t)

]
+

m∑
i=0

βi(t)

+α1(e) +α2(e)− 1
γ

m∑
i=0

∫ t−τi

t
ėT (s)ė(s)ds

where βi(t) is defined by (24) and

W (1,1) = Ṗ (u) +MH(u) +
m∑
i=0

MHdi (u) +HT (u)MT

+
m∑
i=0

HT
di

(u)MT (36a)

W(1,2) = P (u)−M +HT (u)MT +
m∑
i=0

HT
di
MT (36b)

α1(e) =
[
e
ε

]T
F(u)

[
0
H`

]
+
[

0
H`

]T
FT (u)

[
e
ε

]
(36c)

α2(e) =
[
e
ε

]T
F(u)

[
0

GHg

]
+
[

0
(GHg )

]T
FT (u)

[
e
ε

]
(36d)

However, to give an upper bound to the derivative
of the Lyapounov function, we had to give an upper
bound to some terms. For the term βi(t), an upper
bound was given by the inequality (25). So, we pro-
ceed, in the sequel, by giving an upper bound to the
terms α1(e) and α2(e).

Using inequality (11), α1(e) can be upper bounded
as follows

α1(e) ≤ 1
c1

[
0
H`

]T [
0
H`

]
+ c1

[
e
ε

]T
F(u)FT (u)

[
e
ε

]
=

1
c1
HT
` H` + c1

[
e
ε

]T
F(u)FT (u)

[
e
ε

]
However the product HT

` H` can be majorated by the
following expression using (1) and (5)

HT
` H` = [`(x,u)− `(x̂,u)]T [`(x,u)− `(x̂,u)]

≤ b2
1e
T
x (t)ex(t)
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

ω
j
(1,1) ω

j
(1,2) α

j
(1,3) α

j
(1,4) ω

j
(1,5) ω

j
(1,6) M11 S2M22 0 M11G 0 α

j
(1,5)

∗ ω
j
(2,2) ω

j
(2,3) ω

j
(2,4) ω

j
(2,5) ω

j
(2,6) S1M11 M22 0 S1M11G 0 α

j
(2,5)

∗ ∗ α(3,3) α(3,4) 0 0 M11 S2M22 0 M11G 0 α
j
(1,5)

∗ ∗ ∗ α(4,4) 0 0 S1M11 M22 0 S1M11G 0 α
j
(2,5)

∗ ∗ ∗ ∗ −1
c1
In 0 . . . . . . . . . 0

∗ ∗ ∗ ∗ ∗ −1
c1
Iq 0 . . . . . . 0

∗ ∗ ∗ ∗ ∗ ∗ −1
c1
In 0 . . . . . . 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −1
c1
Iq 0 . . . . . . 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1
c2
In+q 0 . . . 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1
c2
In 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1
c2
Iq 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1
γ Ik



< 0 (33)

then,

α1(e) ≤ eT (t)N1e(t) + c1

[
e
ε

]T
F(u)FT (u)

[
e
ε

]
(37)

where

N1 =

 b2
1
c1
In 0

0 0q×q

 (38)

We note G =
[
0 0
0 G

]
, and we give an upper bound

to α2 as follows:

α2(e) ≤ 1
c2

[
0
Hg

]T [
0
Hg

]
+ c2

[
e
ε

]T
F(u)GG

T
FT (u)

[
e
ε

]
=

1
c2
H
T
g Hg + c2

[
e
ε

]T
F(u)GG

T
FT (u)

[
e
ε

]
where

H
T
g Hg = ||Hg ||2 ≤ 2

(
||Hg ||2 + ρ2eTθ (t)eθ(t)

)
with

HT
g Hg =

(
g(x,u)θ − g(x̂,u)θ̂

)T (
g(x,u)θ − g(x̂,u)θ̂

)
≤

(
(g(x,u)θ − g(x̂,u)θ) +

(
g(x̂,u)θ − g(x̂,u)θ̂

))T
×
(
(g(x,u)θ − g(x̂,u)θ) +

(
g(x̂,u)θ − g(x̂,u)θ̂

))
≤ b2

2b
2
3e
T
x (t)ex(t) + b2

ge
T
θ (t)eθ

+ b2b3bg
(
||eTx (t)|| ||eθ(t)||+ ||eTθ (t)|| ||ex(t)||

)
≤ b2

2b
2
3e
T
x (t)ex(t) + b2

ge
T
θ (t)eθ

+ b2b3bg (eTx (t)ex(t) + eTθ (t)eθ)

The latter inequalities lead to

α2(e) ≤ 2eT (t)N2e(t) + c2

[
e
ε

]T
F(u)GG

T
FT (u)

[
e
ε

]
(39)

where

N2 =


b2

2b
2
3+b2b3bg
c2

In 0

0
b2
g+b2b3bg+ρ2

c2
Iq

 (40)

Hence,

V̇ (e) ≤
[
e
ε

]T ([
W (1,1) +N1 + 2N2 W(1,2)

∗ −M −MT

]
+ c1F(u)FT (u) + c2F(u)GG

T
FT (u)

+γ
m∑
i=0

F(u)
[

0
Hdi (u)

][
0

Hdi (u)

]T
FT (u)

[eε
]

Applying the Schur complement on the latter inequal-
ity, leads to inequality (41) (see next page), where the
block W(1,1) is described by

W(1,1) = Ṗ (u) +MH(u) +HT (u)MT +
m∑
i=0

MHdi (u)

+
m∑
i=0

HT
di

(u)MT +N1 + 2N2

W(1,2), N1 and N2 are given by (36b), (38) and (40),
respectively.

Finally, using notations (27) and the information
on the inputs and their derivatives, we compute in-
equality (41), to extract the observer gains via LMIs,
which completes the proof. �

5 Discussion

1. In the literature, two major approaches have
been developed to tackle the design of adap-
tive observer. These approaches are essentially
based on:

(a) the elaboration of a parameter adaptation
law. Here, the unknown parameter vec-
tor is deduced from the stability analysis
of a state observer and the convergence
property of the parameter error is obtained
by a persistence of excitation type con-
straint. Many contributions deal with this
approach as in [5], [15], [17], etc.
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

W(1,1) W(1,2) P (u) M 0 MG MHd0
MHd1

. . . MHdm
∗ −M −MT 0 M 0 MG MHd0

MHd1
. . . MHdm

∗ ∗ −c−1
1 In+q 0 0 0 0 0 . . . 0

∗ ∗ ∗ −c−1
1 In+q 0 0 0 0 . . . 0

∗ ∗ ∗ ∗ −(c2)−1In+q 0 0 0 . . . 0
∗ ∗ ∗ ∗ ∗ −(c2)−1In+q 0 0 . . . 0
∗ ∗ ∗ ∗ ∗ ∗ −γ−1In+q 0 . . . 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ−1In+q
. . .

...

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
. . . 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ−1In+q



< 0

(41)

(b) an augmented system for which the adap-
tive observer design is elaborated. In this
case, the system dynamics are augmented
with the dynamics of its unknown parame-
ters as in [20], [26], [27], [21].

In our work, the design of our adaptive ob-
servers are based on the approach described in
item (b). However, those results are established
by assuming a Lyapunov function where the
derivative depends of both the state and param-
eters errors. So, the assumption of persistent
excitation is not required in our work since the
matrix appearing in the derivative of the Lya-
punov function is not block diagonal, unlike in
[15] where the boundedness of this derivative
depends only of the state error terms.

2. The use of a descriptor approach and augment-
ing the estimation error system as done in the
present work give more additional degrees of
freedom to the problem resolution and allow to
overcome the problem of the product between
the Lyapunov matrix P (u) and the system’s dy-
namic matrix H(u) (see [28]).

3. First, due to the form of the block diagonal
terms α(3,3) and α(4,4) appearing in both LMIs
(18) and LMIs (33), the matrices M11 and M22
should be nonsingular matrices to satisfy the
LMIs constraints. Notice that adding and sub-
tracting the term ρGeθ(t) from equation (29a) al-
low to have the matrix M11 in the term ω(2,2) in
the LMI (33) given in theorem 2.

Second, the matrix M is chosen with the form
given by (17) for the following reasons:

(a) If the matrix M is chosen under the follow-
ing form

M =
[
M11 M12
M21 M22

]
where M11 ∈ R

n×n and M22 ∈ R
q×q, M12 ∈

R
n×q and M21 ∈ Rq×n, we will come across

the following problem[
Y11
Y21

]
=

[
M11
M21

]
Lx

[
Y12
Y22

]
=

[
M12
M22

]
Lθ

Then, the existence of the observer’s gains
depends on the following rank conditions

rank
[
M11
M21

]
= rank

[
M11 Y11
M21 Y21

]
rank

[
M12
M22

]
= rank

[
M12 Y12
M22 Y22

]
which add some non-convex constraints to
satisfy in theorem 1 and 2.

(b) Putting the matrixM with a diagonal form,
i.e. M12 = 0 and M21 = 0, implies that the
blocks α(2,2) andω(2,2) in LMIs (18) and (33)
respectively, will be written as follow

α
j
(2,2) =

m∑
i=1

σ
j
m+iPi3

ω
j
(2,2) =

m∑
i=1

σm+iPi3 +
b2
g + b2b3bg + ρ2

c2
Iq

and one can see that the LMIs (18) and (33)
can not be satisfied.

So, to avoid the above rank constraints, we set
M21 = S1M11 and M12 = S2M22 where matrices
S1 and S2 are a priori chosen tuning parameters.
This leads to Y21 = S1Y11 and Y12 = S2Y22.

However, one can see that, unlike matrix S1, ma-
trix S2 does not appear in the diagonal blocks
α(2,2) and ω(2,2) of LMIs (18) and (33), respec-
tively. By the way, we can set S2 = 0. Whereas,
we need the condition S1 , 0.

4. The obtained results in theorem 2 may appear
as an extension of theorem 1. However, it is not
the case. For the observer design in section 3,
the nonlinear Lipschitz functions are taken as

`(x,u) = 0 and g(x,u) = 1

which imply that assumption 2 will be as fol-
lows
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b1 = 0, b2 = 0 and bg = 1

Applying this assumption on the results of the-
orem 2, do not lead to the results obtained in
theorem 1, due to the fact that this assumption
does not cancel some terms in the block ωj(2,2) of
the LMIs (33). In addition, the bound b3 of the
unknown parameters θ is not required in the de-
sign of adaptive observer in section 3.

6 Numerical examples

To illustrate the efficiency and the feasibility of our re-
sults, we give in the sequel some numerical examples.
Let us consider a bilinear time delay system, with

A0 =
[
−4 2
−1 −1.52

]
A1 =

[
−0.4 0.8
0.27 −0.4

]
Ad0

=
[
−0.1 0.01
−0.11 −0.68

]
Ad1

=
[
−0.8 0.08
−0.2 −0.04

]
We assume that the system is controlled by one
bounded input control u(t) = u1(t)

−0.2 < u(t) = u1(t) = 0.2sin(0.1t) < 0.2

with

B =
[

0.8
0.01

]
One can see, that the derivative is also bounded, such
that

−0.02 < u̇(t) < 0.02

Then, we assume that the system is affected by one
constant unknown parameters θ, where

G =
[
−0.09

0.9

]
The time delays are constant and known such that

τ0 = 0.9, and τ1 = 0.4

The available measurement vector is given by

y(t) = x1(t)

The Lipschitz nonlinear function g(x,u) is bounded
and chosen as follows

−0.2 ≤ g(x,u) = 0.2sin(u(t)− x1(t)) ≤ 0.2

and the function `(x,u) is given by

`(x,u) =
[
sin(x1(t)e−0.2u(t))
sin(x2(t)e−0.2u(t))

]
The unknown parameters θ will be assumed to be
bounded by b3 = 0.5 only for the simulation in section
6.2.

6.1 Numerical results related to the first
observer design without Lipschitz
nonlinearities

By computing the LMIs (18), given in theorem 1, in
the set of the vertices of the convex polytope P , using
the toolbox ”Lmilab”, we obtain the following matri-
ces

P0 =

 8.1168 −1.8823 −1.7727
−1.8823 7.9346 −3.7539
−1.7727 −3.7539 8.8302


P1 =

 1.1724 −1.0393 −0.37411
−1.0393 1.1054 0.36291
−0.37411 0.36291 0.081736


M11 =

[
2.3048 0.15176

0.15176 2.4665

]
M22 = 7.1197

S1 =
[
−0.9 −1.12

]
S2 =

[
−0.003

0.02

]
Y1 =

[
−2.8248
−3.067

]
Y2 = 5.6283

γ = 0.1

which yield to the following observer’s gains

Lx =M−1
11Y1 =

[
−1.1484
−1.1728

]
Lθ =M−1

22Y2 = 0.79053

Figures 1, 2 and 3 show that the observer gives a suit-
able estimation of the states x1 and x2 and the un-
known parameters θ. They prove also that even if
the values of the unknown parameters change, but
still constant, the estimation of the states and the un-
known parameter converge to their real values.

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

x1

x̂1

Figure 1: Variation of the state x1 (—) and its estima-
tion x̂1 (· · ·).
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-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x2

x̂2

Figure 2: Variation of the state x2 (—) and its estima-
tion x̂2 (· · ·).
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Figure 3: Variation of the unknown parameter θ (—)
and its estimation θ̂ (· · ·).

6.2 Numerical results related to the sec-
ond observer design with Lipschitz
nonlinearities

By setting the tuning matrices S1 and S2 as follows
S1 =

[
−0.21963 −0.36278

]
S2 =

[
0.11754

0.049037

]
and fixing b1 = 0.2, b2 = 0.2 and ρ = 0.1, the reso-
lution of the LMIs (33) given in theorem 2 using the
toolbox ”sdpt3” of Matlab, leads to the following ob-
servers gains

Lx =M−1
11Y1 =

[
0.41697
−1.0876

]
Lθ =M−1

22Y2 = 1.0292

with

P0 =

 1.1844 −0.28959 −0.032828
−0.28959 0.61048 0.015679
−0.032828 0.015679 0.084515


P1 =

 0.22818 −0.07406 −0.024134
−0.07406 0.10067 −0.0056328
−0.024134 −0.0056328 −0.00030159


M11 =

[
0.31247 0.030714

0.030714 0.4203

]
M22 = 0.19653

Y1 =
[
0.096884
−0.44431

]
Y2 = 0.20227

c1 = 1.12, c2 = 0.58, γ = 0.054

Using the obtained gains into the observer yields to a
suitable estimation of the states x(t) and the unknown
parameter θ. The following figures show the effective-
ness of our design.
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Figure 4: Variation of the state x1 (—) and its estima-
tion x̂1 (· · ·).
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Figure 5: Variation of the state x2 (—) and its estima-
tion x̂2 (· · ·).
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Figure 6: Variation of the unknown parameter θ (—)
and its estimation θ̂ (· · ·).

7 Conclusion

The proposed adaptive observer for a class of nonlin-
ear time delay system developed in this paper allows a
suitable estimation of the state and the unknown pa-
rameter vectors, simultaneously. In a first time, a bi-
linear system with time delays is considered, which
was extended by the addition of some nonlinear Lip-
shitz functions. The observer gains are obtained by
solving LMIs in the vertices of a convex polytope. The
simulation results show the performances and feasi-
bility of the proposed approach. An extension of our
adaptive observer design was presented in a second
time, when a nonlinear Lipschitz functions interfere
in the dynamics of a bilinear time delay system.
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